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Martin H. Ellis  and J. Michael Steele 

1.  Introduction. 

One of the earliest results in ergodic theory is Poincare'-' s recur- 

rence theorem which states that if a measure preserving transformation on 

a finite space has no non-trivial invariant sets then every set of positive 

measure hits almost every point infinitely often under the action of the 

transformation. The first result of this paper establishes a complement 

to Poincare's theorem by proving that if a measure preserving flow on a 

complete probability space has no non-trivial invariant sets then there 

exists a set of measure zero which completely contains each countable set 

infinitely often under the action of the flow. 

To isolate the difference between this result and Poincare's theorem 

we note that the representation theorem of Ambrose [l] easily implies 

there is a set of measure zero which will catch any element of Q,    but 

a more elaborate procedure is needed to catch every countable subset. 

Also we note that under the action of a set of discrete transformations 

{T : j e 2) one can easily show that no set other than 0,    is capable 

of catching every countable set. 

' Our second theorem shows that no set of less than full measure is 

able to completely catch each set of measure zero, hence the countable 

set in the result mentioned above cannot be substantially enlarged. An 

essential step in the proof of this second result is a lemma which states 

that given any positive real numbers  {a.}._-,  for which Z   cc < 1 

/      CO 
there is a closed set F c: [0,1] of measure zero such that F <f.   U. , I. 

for any collection of intervals {I.) with lengths {a.). 
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We will call a collection of measure preserving transformations 

{T : t e R) a measurable flow on the complete probability space 

(a, 3, |_i)  provided (l) T  is a bimeasurable measure preserving 

transformation of a onto a for each t eTR,  (2) T . = T o T 

and (3) M = [(ai,t): «j e T,M} is measurable in the product space 

ß x R for each M e 3. A flow {T, : t e R) is ergodic provided that 

p. (A) > 0 implies that  U  T A is of full measure. With these 
te(R  * 

preliminaries, we now have our main results. 

2.  Catching Theorems. 

Theorem 1. Suppose T,  is a measurable ergodic flow on a complete pro- 

bability space (&> 3 JI-
1
)'  There is a set A of measure zero such that 

for any countable C there is a t = t(C) such that C c T,A.  In fact, 

for any such C, the set {t: C c T A} is dense in JR. 

Proof. To prove this result we will use Rudolph's representation theorem [6] 

as sharpened by Krengel [5].  Let (T } be an ergodic measurable 

flow on the complete probability (a,3,|i). Further, let p,q be two 

positive real numbers with p/q irrational.  Then there exists a finite 

measure space (B,3*,v), an ergodic, measure preserving, invertible map 

S from B to B and a set D in 3  with the following property.  Let 

a' = (D x [0,p)) u (DC x [0,q)), 3'  be the restriction to a»  of the 

completion of the product of 3  with the Lebesgue measurable sets, anä let 

u' be the restriction to 3  of the completed product of v with Lebesgue 

measure. Let {T£} be the measurable flow on (a',3'',n?') satisfying 



(x,r+t) x e D and t < p-r 

(Sx,r+t-p) x e D and t > p-r 
T! (x,r) = { 

x (x,r+t) x e D and t < q-r 

(Sx,r+t-q) x e D and t > q-r 

for all (x,r) e ß'  and 0 < t < min(p,q). There is a set N € 3 with 

|j.(w) = 0, T. (N) = N for all t e JR, and a bimeasurable measure-preserving 

bisection $: ß-N -*ß' such that T (w) = $" (T! ($ (to))) for all t e IR 

and o> e ß-N. 

In words, {T'l is the flow on (ß1 ^^M-') which sends each point 

(x,r) in D x [0,p)  (respectively, Dc x [0,q)) upward at unit velocity 

until the second coordinate reaches p (respectively q), at which instant 

the point "jumps" to (Sx,0) and continues moving upward; 0 is a measure- 

preserving isomorphism from (ß-N,sL WJ|J-) to (ß',3',|a') which carries 

Tt to T-. 

Let (ß',B',u'), {T'}, W and * be as above. For each positive 

integer n let &/ be a dense open subset of (0,1) whose measure is 

less than 2 , and let 

0^ = {(x,r): x e D and rp" eö^} U {(x,r): x e D
c and rq" e 6^} 

For each positive integer n, IJU*' (Q, ) < |i' (B)/2 , which implies 

M-' (n  , Q ) = 0. Furthermore, for each (x,r) e ß1 and positive integer 

n one has that 

(t: (x,r) e TJ.^)} 



is a dense open subset of R. The Baire Category Theorem now implies 

that for each countable subset C of fi', 

00 

A(C) = n   n    {t: (x,r)eT'(^)) 
n=l (x,r)£C 

is dense in E. We then see that t e A(C) if and only if CcT! (O.00 , Q ). v ' J t  n=l n' 

Thus A = NU$" (n °°  0 ) catches each countable subset of Q at a 

dense set of times, and u(A) = 0.  || 

Before proving our second theorem we establish the lemma mentioned 

in the introduction. 

Lemma.  Let {a.}? n be a countable set of positive reals for which          l i=l 

5"? , a. =a<l. There is then a closed set F of measure zero, F c [0,1], 
"i=l l 

such that F <jt u"_-, I- for any collection of open intervals (I.) satisfying 

m(l.) = a.. v i'   I 

Proof.     We will first construct closed subsets   F^c: [0,1]  such that Fv -.cF, 

m(F. ) -*0,     and such that    R  i U? ,   I.     for any    {I.}    with    m(l. ) = a.. v k' ' k ^    i=l    l v l v i'        l 

We can assume the   OL.    axe monotone decreasing and use the fact that 

J ._•, a.  < 1    to choose an increasing sequence of positive integers 

r ,r ,...     satisfying 

ri r2 T£ 
(2.1) (loc±)+(2l     a),+ ...+ (2^1      £ a) + ...   < (1+e)"1 

i=l 1=1+^ i=1+rj;   -l 

for some e > 0. Sequentially choose positive integers {n.}._. to 

satisfy 

(2.2) ^ > (2ear f- 



and 

(2.3) n n ,...,n > (2^a   )_1 
X d *• r£+l 

for all Z >1. 
n.. -1 

Let F. = U.__ [j/n,, j/n. + l/2n_].  Next F  is defined by parti- 

tioning each interval of F,  into 2n~ equal intervals and letting F? 

be the set formed by taking every other one of these smaller intervals 

(including endpoints). Similarly F. is obtained by partitioning each z 

interval of F , into 2n^ equal intervals and taking every other one 

(including endpoints) as an interval of F.. We have F. _ c: F? and 

m(F.) = 2 . We need to show that for all Z,   F„ et U? , I. when 
Z i       i=l i 

m^) =«i. 

Fix Z    and define a measure of the efficiency of covering F 

with an interval I of length x by 

eff(x) = sup{m(]Tl"F. )/xm(F. ): I is an interval of length x} 

Inequality (2.2 ) was imposed precisely to guarantee that 

(2.U) eff(x) < 1+e if x > a^    . 

Similarly,   (2.3) insures that    eff(x) < 2    if   x > a,    ,    eff(x) < 22    if 
r2 

x > oc    ,    and generally 
r3 



(2.5) eff(x) < 2k~1    if   x>a      ,    2 < k < ß+i . 
rk 

Suppose now {I.}  is any collection of open intervals with a. = m(l. )• 

Then (2.1), (2.k)  and (2.5) imply 

m( 

r r 
00 l 2 

(.Ult) RF  ) <   I   m(!MF  ) +      £     m(ini  ) +••• 
i=l "" i=l " i=l+rn 

ri r2 
< {£  aieff(a1)+    JJ    a±eff (a±)+...} m(Fi ) 

1=1 i=l+r1 

5- "2 r3      2 <{^(l+e)ai+    I     2.a±+    £     2^.ai+...}m(F ) 
i=l i=l+r, i=l+r„ 

<m(Fß)  . 

This last inequality shows    F    cj: U ? , I.,     as claimed. 

To complete the proof we let    F = nf      F..     Since    m(F, )  = 2~ X—X    x K. 

we see    m(F) = 0.    Wow for any collection of open intervals     {I.}    with 

m(l. ) = a      we have    G,   = Fn   n   (uT •,   I.f/ 0.     Since the    G.     are nested 
XX K. K X—X      X K 

and compact we also have F n (llT , I.) / $,    and the proof of the lemma 

is complete. || 

In the next result we use Rudolph's representation theorem to create 

circumstances where the preceding lemma can be effectively applied. 

Theorem 2.  Given any A of less than full measure there is an E of 

measure zero such that E is not contained in T A for any t e (R. 

Proof. As in Theorem 1 we consider the flow T' built under the two- 

step (p,q) function,-where D and D° denote the parts of the 



base B which lie under the heights p and q respectively. Let 

A' be the image of A-N under the isomorphism $. 

The product measurability of A'  together with the fact that A 

does not have full measure imply there is an 0 < a < 1 such that 

Id' (A' ) = d\i< (&' ) and one of the following must hold. 

(1) There is an x e D  such that m{t: (x,t)eA* ,  0 < t < p} < op 

or 

(2) There is an x e Dc such that m{t: (x,t)eA', 0 < t < q} < Oiq 

We can suppose without loss of generality that (l) occurs. Next we take 

.  -jOO 

i 1=1 a collection of open intervals {I.}.   such that 

(t: (x,t)eA' , 0 <-t < p) c U I. 
i=l 1 

and for which £?, m(l. ) = a1 < p. Setting a    = m(l. ) for i = l,2,... 

and o,    = oc      = (p-cc )/3 we apply the preceding lemma to obtain a 

closed Fc(t: 0 < t < p) Df measure zero which cannot be covered by any 

collection of intervals with lengths (a ,aQ,a: ,a2,...). We claim that 

the set {(x,t): teF] is not contained in any element of the class 

T= {TJ.A-: |t| < (l-(*)/3). 

To prove the claim we note by the definition of a flow under a 

function that the image of A' (\ { (x,r): 0 < r < p} under T,  is 

just a translate of A' (\ { (x,r): 0 < r < p} up the fiber  (x,r) 

by an amount t except for the bottom {(x,r): 0 < r < t} and the 

image of the top A'A {(x,r): p-t < r < p}.  The fact that a system 



of intervals of length    ^a_1)a0>cc
1'

a2  '"^    c^rmot cover    F    then 

implies that    {(x,t):   teF}    is not caught by any element of 

(T|.A':   |t|  < (p-a')/3). 
CO 

To complete the proof we let F = U  T'  {(x,t):teF) where 
k=-oo 

s =   (p-ai )/3.     Since    {(x,t):   teF} <£ T! A'     for     |t|   <s    we have 

T^.g{(x,t):   teF) <£ Tj.+k£A'     for     |t|   <s    and all    k.     This  says 

F <p TjA'     for all t efR.     For the last step we let    E = $      F.     Since 

$    preserves measure    (i(E) =0    and since     (T,A)n E =   (T   (A-N))n E 
U Li 

for all t e (R the theorem is established. 

3.  Further Remarks. 

Rudolph's representation theorem ([53,[6]) played a key role in 

the conceptualization and proof of the results given here, but one should 

note that at the expense of greater complexity one need only appeal to 

the representation theorems of Ambrose [l] or Ambrose and Kakutani [2], 

The assumption of ergodicity made in our results can be weakened to 

aperiodicity since the representation theorem remains valid.  This is 

mentioned in Rudolph [6] and the extension is described in detail in 

Krengel [5]. For simplicity of exposition we have omitted the full 

discussion of this more technical hypothesis. 

Since we have dealt here only with flows, we should note that there 

are some related results for transformations. It is proved in Steele 

[7] that for an ergodic T on a Legesgue probability space there is for 

any e > 0 an  A with u (A) < e which satisfies the condition: 

For any finite F there is a j=j(F) such that F c T^A. 

One can easily show that this result is best possible in the senses that neither 



can A be taken to be of measure 0 nor can F be allowed to be 

countable. 

This result provided one of the motivations of the present paper, 

and it has also been extended in a quite different direction in Ellis 

[3]. 

Finally we note that a much earlier contribution to covering with 

sets of measure zero was made by Erdos and Kakutani [h],  but their 

work concerns Euclidean similarities rather than measure preserving 

trans formations. 
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